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Abstract

Background: The regional integrated health care model “Healthy Kinzigtal” started in 2006 with the goal of
optimizing health care and economic efficiency. The INTEGRAL project aimed at evaluating the effect of this model on
the quality of care over the first 10 years.

Methods: This methodological protocol supplements the study protocol and the main publication of the project.
Comparing quality indicators based on claims data between the intervention region and 13 structurally similar control
regions constitutes the basic scientific approach. Methodological key issues in performing such a comparison are
identified and solutions are presented.

Results: A key step in the analysis is the assessment of a potential trend in prevalence for a single quality indicator
over time in the intervention region compared to the corresponding trends in the control regions. This step has to
take into account that there may be a common - not necessarily linear - trend in the indicator over time and that
trends can also appear by chance. Conceptual and statistical approaches were developed to handle this key step and
to assess in addition the overall evidence for an intervention effect across all indicators. The methodology can be
extended in several directions of interest.

Conclusions: We believe that our approach can handle the major statistical challenges: population differences are
addressed by standardization; we offer transparency with respect to the derivation of the key figures; global time
trends and structural changes do not invalidate the analyses; the regional variation in time trends is taken into
account. Overall, the project demanded substantial efforts to ensure adequateness, validity and transparency.
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Background
The integrated health care model “Healthy Kinzigtal” was
established in 2006. The model addresses the full spec-
trum of morbidities and health issues for a population
defined by a residential area (with the only exception of
dental care). It is based on a contract among a regional
physicians’ network, a management and holding com-
pany specialised in integrated care, and the Allgemeine
Ortskrankenkasse Baden-Württemberg (AOK-BW), the
largest statutory health insurance fund in the federal state
of Baden-Württemberg (BW). The contract is a so-called
shared savings contract, that is, the healthcare cost savings
achieved are distributed between the contractual part-
ners. (For further details we refer to the study protocol [1]
and the main project publication [2].) From an economic
perspective the contract was rather successful, as cost sav-
ings were achieved. However, a shared savings contract
may lead to lower levels of care, that is, an underutilisa-
tion of health services. Consequently, an evaluation of the
health care quality of the model is highly relevant. The
aim of the INTEGRAL project was to conduct such an
evaluation.
Comparing quality indicators based on claims data

between the intervention region and 13 structurally
similar control regions constitutes the basic scientific
approach. More precisely, the idea was to determine for a
single indicator the prevalence trend in each region and
to compare the observed trend in the intervention region
with the trends in the control regions. The control regions
allowed not only a determination of the expected trend
in the absence of the intervention. They also allowed the
determination of the natural variation of these trends,
i.e. we did not a priori assume that the trends are equal
across the control regions. Regional differences in health
care are well established in Germany [3], and it cannot
be ruled out that there are also regional differences in the
prevalence trends of quality indicators, reflecting ongo-
ing changes in the local situation. Hence the fact that a
trend in an intervention region differs from a mean trend
in the control regions does not necessarily indicate an
effect of the intervention. Such differences may also hap-
pen by chance, and therefore an evaluation has to take into
account the variation in trends observed in the control
regions. We hence aimed to conclude a specific role of the
intervention only in the case that the observed trend in the
intervention region could be regarded as an extreme one
relative to the variation observed in the control regions.
The study protocol [1] mentions some statistical chal-

lenges in implementing the basic approach for a single
indicator: 1) In spite of the structural similarity of all
regions, differences in the population composition with
respect to important risk factors are to be expected. This
may lead to variation in crude prevalences at baseline.
2) Moreover, the populations may change over time, and

they may change differently in different regions. 3) There
may be global time trends or structural changes in the
prevalence numbers. 4) There may be floor or ceiling
effects. 5) To support final decisions, it might be desirable
to reduce complex patterns in time trends across regions
to a single number. This, however, may hide important
data features influencing the final interpretation. 6) There
is an interest in analysing an entire set of quality indi-
cators. Consequently, we have to measure or phrase the
intervention effect in a manner comparable across all
indicators.
The purpose of this paper is to present the conceptual

and statistical approach chosen to tackle these issues in
the analysis of a single indicator, as well as the approach
chosen to assess the overall evidence for an impact of the
intervention. In addition, some further ideas and exten-
sions are discussed.

Methods
Selection of control regions
The contract covers the Kinzigtal region, which is located
in the Black Forest in Southwest Germany and home to
about 70,000 inhabitants. This defines the intervention
region.
The control regions were selected in a process described

in detail in Additional file 1. As a first step, potential con-
trol regions were identified based on the following criteria,
attempting to mimic basic features of the intervention
region: geographically contiguous area; rural community
or small to medium sized town (<50,000 inhabitants);
river valley or active physicians’ network existing already
in 2005. Regions with an integrated care contract last-
ing at least until 2015 were excluded. In a second step,
the distribution of a series of structural indicators reflect-
ing the social, economic and health services structures
were compared among the 29 regions identified in the
first step. The aim was to identify the regions most similar
to the intervention region. In addition, the size require-
ment was tightened to include only regions with at least
35,000 inhabitants and to cover only towns with maxi-
mally 30,000 inhabitants. Immediate proximity to a hospi-
tal withmaximum service level or to amajor city, common
border with Switzerland, and high internal heterogene-
ity were defined as further exclusion criteria. It was also
taken into account that the overall number of insurees in
the control regions and the intervention region should not
exceed 500,000 in order to fulfill requirements on data
protection. Finally, 13 control regions were identified that
were regarded as showing a pattern of the structural indi-
cators similar to the intervention region. Seven of the 13
control regions had an active physicians’ network.
We number the regions from 1 to R = 13 for the con-

trol regions and use either r = 0 or KT to designate the
intervention region Kinzigtal (KT).
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Selection of indicators
The quality indicators to be analysed in this project were
selected in a process described in [4]. In the end only
indicators referring to a binary event in a specific pop-
ulation were selected. So in the classical terminology of
a population-based quality indicator, it consists of a def-
inition of a denominator, i.e. the size of a population of
interest, and a numerator, i.e. the number of subjects in
this population who experienced the event of interest.
All selected indicators referred to populations defined on
an annual basis, reflecting a common practice in defin-
ing indicators. Not all primarily selected indicators could
be operationalized based on the available claims data,
and some indicators could be operationalized in differ-
ent manners [5]. Finally, 119 indicators were candidates
for the statistical analyses. However, 13 indicators showed
only very few events or non-events, such that the formal
analysis described in this paper was not feasible. Among
the 106 remaining indicators the prevalence ranged from
0.12% to 96.7% in the BW sample. As part of this selection
process, the desired direction of a change in the indicator
was also defined, i.e. whether an increase or a decrease is
regarded as desirable. For five indicators, such a decision
was not possible. Finally, it was decided whether it was
reasonable to apply an indicator to subjects covered by a
family doctor-centered healthcare contract or not.

The data and the intervention(s)
The project makes use of the routine claims data of
the AOK-BW. Of the 70,000 inhabitants of the Kinzig-
tal region, 33,000 are insured with the AOK-BW. Overall,
the control regions cover about 452,000 insurees of the
AOK-BW.
The shared savings contract and the regional integrated

care model evaluated in the INTEGRAL project implied
many different concrete interventions initiated by the
management company. The interventions aimed at foster-
ing patient self-management and shared decision-making
(e.g. by supporting the use of individual treatment plans
and goal-setting agreements) and at coordinating the care
efforts across different sectors. A more detailed descrip-
tion can be found in [6]. It should be noted that many
of these interventions aimed at an improvement at the
system level and hence also patients not insured by the
AOK-BW may have been affected. Effects in this patient
population could of course not be evaluated in the INTE-
GRAL project.

Time range
The time range included the years 2006 to 2015. It was
originilly planned to include data from 2005, i.e. the year
prior to the start of the intervention. However, it turned
out that the data of 2005 were not of sufficient quality to
be included in the analysis. The insufficient quality can be

explained by the fact that the data warehouse of the AOK
research institute (WIdO) was still in its start-up phase at
that time.

Data preprocessing
The indicators were operationalized based on the claims
data of the AOK-BW. Details are described in [5]. Roughly
speaking, for each calendar year from 2006 to 2015 we
identified the population living in the intervention region
or one of the control regions who were insurees of the
AOK and satisfied the denominator definition of the indi-
cator. Then for each member of this population it was
determined whether the event of interest happened or
not. More details are outlined in Additional file 2.
In addition, a 10% sample of the entire BW popula-

tion of members of the AOK was drawn as described in
Additional file 2. Excluding subjects living in the inter-
vention region (but not those living in one of the control
regions), an additional region – called the “BW region” in
the sequel – was defined for each year. This was regarded
as an alternative control region supplementing the con-
trol regions described above. However, when referring to
“control regions” in the following, we do not include this
additional region. When referring to region numbers, this
region has the index R + 1 = 14, but also the index “BW”
is used. The 10% sample will be also used for the purpose
of standardization.
For a single indicator considered in this project, the

analysis population is defined as the union of all these
populations, i.e. from the intervention region, the prese-
lected control regions, and the BW region. Subjects could
be followed over time, and hence the basic data can be
described by random variables Yit , denoting the outcome
of interest in subject i in year t. The outcome may not be
defined for all years in the event a subject enters or leaves
the denominator population. We implicitly assume in the
following that for each year only the subjects included in
the denominator population of the indicator are included
in the analysis. In addition, the variable Rit denotes the
region subject i was living in year t, which may change
over time due to moving. The years are numbered from
t = 0 to T. The value of T was 9 for most indicators, but
a few indicators could not be operationalized in the first
years and covered a more narrow time range.

Unit of prevalence trends
Independent of the type of event defining an indicator, we
refer to the frequency of an event in the denominator pop-
ulation of a year as the (annual) prevalence. Time trends
in prevalences, i.e. changes in prevalence over time, will
build the main corner stone of the analytical approach.
We decided to express trends as absolute differences over
time, as stakeholders reading the analyses of single indica-
tors can be expected to have some background knowledge
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– including an idea about the prevalence – such that they
can interpret absolute differences. When later summa-
rizing results across different indicators, we will change
partially to an odds ratio scale to achieve a better compa-
rability across indicators.
We decided to report trends in prevalence with respect

to a five years interval to assist in the interpretation. Five
years reflect a time period at which one typically expects
to see an effect from a population-based intervention. We
did not report annual changes, as such numbers tend to
be small, and hence invite an overly pessimistic interpreta-
tion. Irrespective of this timescale, all trend estimates will
be based on all years for which data was available. We fur-
ther decided to report the five-year trends in percentage
points instead of fractions between 0 and 1, again mainly
to avoid over-pessemistic interpretations.

Confounders
The comparison regions were selected with the aim of
facilitating comparability with the intervention region.
Nevertheless, we have to expect differences in the compo-
sition of patient populations with respect to variables such
as age, gender, comorbidity status and socio-economic
status (SES). These differences can also explain differences
in the prevalence of indicators. Hence, it is a common
approach in population epidemiology to adjust for such
differences by appropriate standardization [7, 8].
This is typically done in order to allow a fair compari-

son across regions with respect to the prevalence. This is
to some degree also relevant in our context, as compara-
bility of prevalences across regions at baseline facilitates
the interpretation of trends. However, our main interest
lies with the time trends themselves. It is thus relevant for
us to address confounding with respect to time trends. A
typical example would be age demographics with differ-
ences in the growth of elderly populations across regions.
This will increase the variation in trends for any indicator
with the probability of an event increasing with age, e.g.
the population prevalence in diabetes. This may even bias
the estimation of intervention effects, if the intervention
region has a specific speed.
A further crucial point may be that the intervention

itself may change the distribution of covariates in a way,
such that adjustment introduces a bias. For example, the
intervention may reduce comorbidity, and then adjust-
ment for comorbidity punishes the intervention region for
this. Or the intervention may improve the documenta-
tion of the comorbidity level, and hence the population
in the intervention region seems sicker on average than
in reality, giving the intervention region an unwarranted
advantage when adjusting. To avoid such problems, we
will use the insuree’s comorbidity level at the time of
entering the study population instead of using the actual
value from each year.

The use of claims data restricts the possibility to define
confounders.Wemake use of the following three potential
confounders:

(i) age (in years)
(ii) gender
(iii) Charlson comorbidity index at study entry

In addition, we make use of the SES, operationalized by
the German Index of Socioeconomic Deprivation (GISD,
[9, 10]). While not available at the individual level, the
SES was available at the regional level of municipalities
associations and could be assigned by postal code. The
intervention region and the 13 control regions covered
1687 different post codes overall, such that on average
4518 subjects shared a postal code. For the study pop-
ulation the GISD varied between 4.76 and 8.72, where
higher values stand for a more pronounced deprivation
and hence a lower SES.

Family doctor-centred healthcare
AOK-insurees in the federal state of BW are offered par-
ticipation in a specific family doctor-centered healthcare
program. Insurees enrolling into this program choose a
fixed general practitioner (GP) as their family doctor.
Unfortunately, for some health services, this implies a lack
of claims data in these insurees, as they are covered by a
general fee for the GP. Consequently, if an insuree signs
such a contract, certain events will not be visible in the
claims data. If the event definition of an indicator could
have been affected by this, the patients with this type of
contract were removed from the analysis population. This
may introduce a biased selection, as insurees signing such
a contract may be more (or less) healthy than the general
population. However, by adjusting for the above men-
tioned confounders, we can at least limit a corresponding
selection bias.

Relevance limits
The precision at which prevalence trends can be estimated
varies highly from indicator to indicator due to differ-
ences in the size of the denominator population and the
prevalence. Hence it would be highly misleading to regard
statistical significance as the solely relevant criterion. The
magnitude of the observed trend differences should be
taken into account, too.
Originally, the idea was to ask the medical experts

involved in the development of the indicators to also
define limits for clinical relevance. This turned out to
be not manageable due to the inherent arbitrariness and
also the large number of indicators involving very dif-
ferent specialities. We hence decided to use a numeri-
cal criterion. For this we first considered the range of
potential improvement, taking the prevalence π in the
BW sample in the initial year as a starting point. For
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an indicator with a desired increase in prevalence, the
potential improvement was then defined as the difference
between 100% and the prevalence. For an indicator with a
desired decrease in prevalence, it was defined as the differ-
ence between the prevalence and 0%. A consensus process
within the research group resulted in setting the relevance
limit as 10% of the potential improvement, as well as to
require minimum 0.1 percentage point improvement. (Cf.
[11] for a similar approach).

Themedical practice of a patient
For each patient in the analysis population of an indicator
and for each calendar year, the health care provider who
was likely responsible for the management of the patient
was determined. This was assessed by an algorithm
that, roughly speaking, identified the primary responsi-
ble provider (depending on the tracer diagnosis) based on
the following criteria (in descending order): highest num-
ber of treatment quarters, contacts (days with services),
and number of services billed. In case of ties, the provider
with the first contact in the calendar year was chosen.
If still a unique provider could not be identified, a ran-
dom selection was made. In general, health care provider
refers here not to a single individual, but to a practice,
possibly constituted by several individuals. We refer to
this as the practice of the patient. The precision of the
assignment varies from indicator to indicator, as for some
indicators it can be challenging to determine a respon-
sible provider. This information will not be used in the
main analytic approach, but only in sensitivity analyses
and specific extensions.

Main analytic approach
The analysis of a single indicator is based on the following
five steps:

(i) estimating standardized annual region-specific
prevalences prt

(ii) estimating five-year time trends θr in each region
(iii) estimating the mean trend μC in the control regions

and the standard deviation σC of the true trends
across the control regions

(iv) computing key figures to assess the difference in
trend in the intervention region relative to the
control regions, in particular �̂C = θ̂KT − μ̂C ,
i.e., the difference between the trend in the
intervention region and the mean trend in the
control regions, and a z-score z relating the observed
difference �̂C to the standard deviation σ̂C of the
trends in the control regions

(v) verbal classification of the results as a strong positive
(or negative) hint, a regular positive (or negative)
hint, a weak positive (or negative) hint, or
inconclusive while taking the relevance of the
magnitude of the difference �C into account

In principle, the first four steps could be replaced by fitting
one complex model integrating all steps. We preferred a
step-wise approach, as it allowed us to achievemore trans-
parency about the process from the original data to the
final results. To increase this transparency, the numeri-
cal results from each step are visualized in a user-friendly
manner. This is exemplified in the single indicator “Treat-
ment with acetylsalicylic acid (ASA)” in the sequel. This
indicator aimed at the percentage of coronary heart dis-
ease patients who received a prescription for ASA within
the last 12 months. Further examples will be presented
later.
All statistical computations were performed with

Stata 15.

Estimating standardized prevalences
Estimates of the annual region-specific prevalences were
based on a direct standardization to the 10%-sample of
BW. This was achieved by 1) using the maximum likeli-
hood principle to fit a logistic regressionmodel to the data
from all regions and time points describing the individual
probability of an event as a function of region, calendar
year and the four potential confounders, 2) applying the
derived (year and region specific) prediction rule to all
subjects in the BW sample, and 3) averaging over all the
individual probabilities.
In the logistic regression model it is assumed that all

confounders have the same effect in all regions and at
all time points, but we allow a region and time specific
intercept. Due to the large sample size we allow for gen-
der specific effects of age, comorbidity and GISD and also
potential non-linear effects of age and comorbidity.
The logistic regression model considered reads

logit Pα,β (Yit = 1|Xit) = αRitt

+ βgender1{genderi=1} + β
genderi
gisd gisdit

+ f age
β
genderi
age

(ageit) + f comorb
β
genderi
comorb

(comorbit)

with α and β denoting parameter vectors and f func-
tions with self-explanatory indexing. The gender specific
parametrization is dropped if there are < 100 events (or
non-events) in one gender. For the gender-specific age
effects we chose f ageβ (x) as restricted cubic splines (also
called natural cubic splines) with k knots. k is chosen as
the difference between the 99% and 1%-ile of the gender
specific age distribution, divided by 10 and rounded up to
the next integer while allowing a minimum value of 2 and
a maximum value of 4. The spline knots are placed at the
10th, 50th and 90th percentile if k = 3, and at the 5th,
35th, 65th and 95th percentile if k = 4. In the case k = 2
the function f ageβ (x) is linear, so the knot placement does
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not matter. To increase the numerical stability, the splines
are based on themean centered version of the variable age.
For the gender-specific effect of comorbidity we consider
an alternative approach taking the typical skewed distri-
bution of comorbidity indices into account. We use the
function

f comorb
β (x) = α +

(L−1∑
l=0

βl1{x=l}

)
+ βL(x − L)1{x≥L}.

Here L is chosen as the upper 90%-ile of the gender-
specific distribution of the integer-valued variable comor-
bidity, rounding down but choosing at most the second
largest observed value. This way it is ensured that the
linear part is based on at least 10% of the available obser-
vations and that there are at least two different values
among these observations. Furthermore, if only two dif-
ferent values are observed in the variable comorbidity,
L is set to 0 and the model reduces to a simple linear
model. The variable is dropped from the model if it is con-
stant. Since there is already an explicit gender effect in the
model, we set α = 0 to ensure identifiability.

The standardized prevalences are obtained as p̂rt =
1

|SBWt |
∑
i∈SBWt

�( α̂rt +

β̂gender1{genderi=1} + β̂
genderi
gisd gisdit +

f age
β̂
genderi
age

(ageit) + f comorb
β̂
genderi
comorb

(comorbit)),

with SBWt denoting the individuals in the BW sample at
time t and

�(x) = logit−1(x) = 1
1 + e−x .

The standard error of each standardized prevalence is
obtained by application of the delta rule. Standard errors
for the parameter estimates of the logistic regression
model are based on robust standard errors taking cluster-
ing within an individual over time into account. Due to
the large sample size of the BW sample, the full applica-
tion of the delta rule was not possible and a Monte Carlo
approximation was used as outlined in the Appendix.
The estimated standardized prevalences are visualized

by line plots (Fig. 1) distinguishing the intervention
region, the control regions, and the BW region by different

Fig. 1 Visualization of the estimated standardized prevalences in a line plot for the indicator “Treatment with acetylsalicylic acid (ASA)”, for which
high prevalences are desired. In the BW region we can observe a slight upwards trend and the trends vary substantially across the control regions. In
the intervention region “Kinzigtal” (KT) the prevalence starts below the BW prevalence, but is distinctly above the BW prevalence at the end of the
observation period
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colors. No confidence intervals are shown in these plots to
avoid an overcrowded visualization.

Estimating time trends
If one could be sure that a clear linear trend were vis-
ible in the prevalences within each region, assessment
of a trend would be rather straightforward. However, we
have to anticipate that for some indicators there may
be a non-linear overall trend, for example a flattening
decrease/increase or a structural change due to adminis-
trative reasons. In such a situation, the trend of interest is
the trend on top of the common pattern across all regions,
i.e. how a region is developing compared to the overall
trend. For example, when leaving aside the general trend,
a prevalence trend of -0.01 over 5 years for a region should
reflect that the prevalence decreased by one percentage
point faster in five years as compared to the general trend.
We refer to this definition of a trend as the “on-top-trend”,
which is used independent of the observed pattern in the
general trend. However, as on-top-trends do not reflect a
general linear trend, they do not coincide with the trend
visible in the inspection of the line plots mentioned above.
To avoid this conflict, an estimate of the overall linear
trend is added.
To obtain estimates for the on-top-trend θ̃r , we fit a

meta-analytic model of the type

p̂rt = αt + βr + θ̃rt + γrt + εrt (1)
with γrt ∼ N(0, τ) and εrt ∼ N(0, σ̂rt)

with the side conditions
∑

t αt = 0 and
∑

r θ̃r = 0. Here
τ denotes the unexplained variation across regions and
time points (estimated in fitting this model), whereas σ̂rt
denotes the previously obtained estimate of the standard
error of p̂rt for r = 0, ...,R + 1 and t = 0, ...,T , which is
plugged in.
Estimates of the 5-year trends θr are then obtained

by adding an estimate of the (linear) overall trend and
multiplication with 5, i.e.

θ̂r := 5( ˆ̃
θr + θ̂ )

with θ̂ derived as the ordinary least squares (OLS) esti-
mate from fitting the model

α̂t = μ + θ t + εt .

Note that we have for θ̂ the explicit representation

θ̂ =
∑T

t=0(t − t̄)(αt − ᾱ)∑T
t=0(t − t̄)2

=
∑T

t=0 tαt∑T
t=0(t − t̄)2

.

Consequently, we have an explicit representation of θ̂r as
a function of (

ˆ̃
θr)r=0,...,R+1 and (α̂t)t=0,...,T , allowing us to

compute easily its standard error based on the variance-
covariance matrix of (

ˆ̃
θr)r=0,...,R+1 and (α̂t)t=0,...,T . The

results of this step – i.e. the region specific trend estimates

with 95% confidence intervals – are visualized by a forest
plot as shown in Fig. 2.
The choice of the structure of the model (1) is basically

motivated by what can be achieved with standard software
for meta regression – in particular the metareg com-
mand of Stata that we used. For this reason we could not
incorporate the (estimable) correlations between the dif-
ferent p̂rt (in particular within one region) and could not
allow region specific variances for γrt .

Estimating the mean and standard deviation of the true
trends across the control regions
Estimates for the mean μC and the standard deviation σC
of the true trends are obtained by considering a meta-
analytic model for the estimated trends, i.e.

θ̂r = γr + εr with γr ∼ N(μC , σC) and εr ∼ N(0, σ̂r)

with σ̂r denoting an estimate of the standard error of θ̂r .
We made use here of Stata’s metan command using the
random option, implementing the method of [12].

Computing key figures
The first key figure of interest is the difference between
the trend in the intervention region and the mean trend in
the control regions:

�C = θKT − μC

This informs us about the magnitude of the difference,
and allows us in particular to judge the relevance. How-
ever, this does not address the question of which degree
the difference can be regarded as exceptional or whether it
is within the variation of trends to be expected when con-
sidering small local regions. To address this question, we
relate the observed difference to the standard deviation of
the trends in the control regions in the spirit of a z-score:

z = θKT − μC
σC

= �C
σC

As a third supportive figure we consider the difference
between the trend in the intervention region and the trend
in the BW-region:

�BW = θKT − θBW

This is mainly included to allow a comparison with pre-
vious analyses based on a comparison with figures from
BW [13]. The expectation is that the estimates of �C and
�BW are similar. Discrepancies may remind us that the
control regions differ substantially from the whole fed-
eral state of BW, which has to be taken into account when
extrapolating effects of the intervention to the whole state.
For all three key figures we report estimates and confi-

dence intervals. For the differences we also report p-values
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Fig. 2 Visualization of the estimated trends per region in a forest plot for the indicator “Treatment with acetylsalicylic acid (ASA)". We can observe a
positive trend for most control regions, i.e. also the control regions are able to move into the desired direction. However, the intervention region
“Kinzigtal” shows together with one control region the most pronounced trend

for a test of the null hypothesis of no difference. Confi-
dence intervals for �C and �BW are computed as Wald-
type intervals assuming independence between θ̂KT and
μ̂C and between θ̂KT and θ̂BW , respectively. Confidence
intervals for z are based on Fieller’s method assuming
independence between �̂C and σ̂C [14].
Conceptually, the assumption of independence between

the different θ̂r can be justified by the fact that they
reflect mainly the data from the different regions, i.e. non-
overlapping sources of information. However, as they are
based on fitting one model, slight correlations cannot
be excluded. Independence between �̂C and σ̂C may be
justified by the general result on independence between
estimates of fixed effect parameter and random effect
variances in mixed models.
In order to facilitate the understanding of the back-

ground of these key figures, we suggest a two-dimensional
visualization of all trend estimates and the estimatedmean
and standard deviation of the true trends in the control
regions. This way the complete input used in comput-
ing the key figures becomes visible. In this visualization
(Fig. 3) the x-axis refers to the trend and each trend esti-
mate is reflected by a vertical line. Different colors are
used for the control regions, the intervention region and
the BW region, respectively. μ̂C and σ̂C are transformed

to a normal density superposed over the whole graph. �̂C
and �̂BW are then visible as differences between lines of
different colors, and ẑ corresponds to the relative position
of θ̂KT to the density function reflecting the variation of
trends in the control regions.

Verbal classification of the results
To come to a final conclusion about a potential specific
role of the intervention region with regard to a single indi-
cator, it is definitely not sufficient to look at the p-value to
reject the null hypothesis H0 : �C = 0. This would ignore
the relevance of the magnitude of the difference, and the
relative position of the trend as expressed by the z-score.
Since there is some freedom in how to summarize these
different aspects in a final conclusion, we suggest a for-
mal rule for verbalization of the results. This seems to be
useful here, as we have to judge a large number of indi-
cators, and a pre-specified formal rule helps to ensure a
uniform, objective and transparent handling of all indica-
tors. This can also serve as a basis for a formal assessment
of the evidence about the role of the intervention across
all indicators.
In the following, we denote with ��C and �z the directed

version of the estimates �̂C and ẑ, i.e. in the case where
a numerically negative trend implies an improvement in
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Fig. 3 Visualization and tabulation of the key figures for the indicator “Treatment with acetylsalicylic acid (ASA)". We can observe that the trend
estimate of the intervention region “Kinzigtal” is at the upper bound of the trend estimates of the control region. However, several other control
regions have only a slightly less pronounced trend, and we obtain consequently a z-score of 1.35 only. The difference of the trend in the
intervention region to the mean of the trends in the control regions is 3.27 with a confidence interval from 1.31 to 5.22. This is similar to the
difference to the BW region, as the trend in the BW region is rather close to the mean of the trends in the control region

quality, we just change the sign of the estimates. With bl
we denote the lower bound of the 95% confidence inter-
val for ��C and with bu the upper bound. lrel denotes the
relevance limit. In case of ��C to be positive, we apply
the verbal grading shown in Table 1. (The table is to be
read sequentially: As soon as a condition is satisfied, the
corresponding verbalization is applied.)
Both the condition on the directed estimate as well

as the condition on the directed z-score have to be ful-
filled. The condition on the z-score, however, makes only
sense if there is some evidence for a variation of the true
trends across the control regions. Hence the condition is
only applied if σ̂C is above 0.001 and if the confidence
interval for z is not degenerated (as it can happen when
using the Fieller approach). In case ��C is negative, we
apply the corresponding scheme to define strong negative,

Table 1 The verbal grading used to classify hints

Verbalization Trend Z-score

strong positive hint ��C > lrel AND
bl( ��C) > 0.5 ∗ lrel

�z > 1.96 AND bl(�z) > 1

regular positive hint ��C > lrel AND
bl( ��C) > 0

�z > 1.96

weak positive hint ��C > lrel �z > 1

inconclusive otherwise

regular negative, or weak negative hints or the choice of
the verbalization “inconclusive”.
In the example considered in Figs. 1, 2 and 3 the desired

direction is an increase in prevalence. The overall baseline
prevalence in the BW sample is 32.0%, hence the rele-
vance limit is 6.8%. The estimated trend difference �̂C
between the intervention region and the control regions
is 3.27%, so below the relevance limit. Consequently, the
verbalization is “inconclusive”.

Results
Analysing an indicator with a global trend
It is well known that the use of statins in patients with
coronary heart disease (CHD) has increased during the
study period. This is also visible in Fig. 4 when considering
the prevalence of the indicator “Treatment with Statins I”
aiming at the prevalence of prescribing statins within the
previous 12 months in CHD patients. In the intervention
region the increase seems to be more pronounced than
in the BW region, and in Fig. 5 we observe that it is also
more pronounced than in many control regions. How-
ever, there are still several control regions with a similar
(or even more pronounced) trend such that the z-score
reaches only a value of 1.12 (Fig. 6). Moreover, the rel-
evance limit is here 4.92%, and �̂C is below this value.
Hence this result is verbalized as “inconclusive”.
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Fig. 4 Visualization of the estimated standardized prevalences in a line plot for the indicator “Treatment with Statins I”

Fig. 5 Visualization of the estimated trends per region in a forest plot for the indicator “Treatment with Statins I”
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Fig. 6 Visualization and tabulation of the key figures for the indicator “Treatment with Statins I”

Analysing an indicator with a change point in the global
trend
During the study period, new drugs for the treatment of
diabetes type II came into use. Hence an overall trend to
more formulary concordant diabetes medication reversed
around 2011 into a decreasing trend (Fig. 7). Also the
intervention region followed this reversal, but in a less
pronounced degree. Consequently, we observe in the
intervention region a positive trend in contrast to most
control regions (Fig. 8). Actually, the trend is higher than
in all control regions (Fig. 9), resulting in a z-score of 1.76.
Since the baseline prevalence of this indicator in the BW
sample is already as high as 91.4%, the room for improve-
ment is limited. The relevance limit is 0.86, and the lower
bound 2.88 of the confidence interval for �C is above this
value. Consequently, the requirements for a weak positive
hint are fulfilled. However, the z-score is not above 1.96,
and hence the requirements for a regular positive hint are
not fulfilled.

Analysing an indicator with a structural change
Until October 2013, GP-led geriatric assessments
required a corresponding additional certificate of the
GP in order to be reimbursed. After this date, all GPs
could expect reimbursement if the indication for such
an assessment (defined by the presence of certain diag-
noses) was given. This implied a substantial change in the
corresponding indicator “GP-led geriatric assessment”,
aiming at the prevalence of this assessment among all
eligible patients. This is clearly visible in Fig. 10, and the

intervention region follows this general trend as well
as most control regions. Consequently, the trend in the
intervention region is within the distribution of the trends
of the control regions (Fig. 11), and the verbalization is
just “inconclusive”.

Assessing the overall evidence
Since the main analytic approach is applied to a large
number of indicators, the question how to summarize the
results in an adequate manner naturally arises. In particu-
lar, the question of the overall evidence for a specific role
of the intervention region has to be addressed. In gen-
eral we can try to summarize the evidence by computing
a statistic for each indicator and to sum up these values.
We consider here three approaches to compute such a
summary statistic S:

(i) Shint : Strong positive / negative hints are counted as
+/- 5 points, regular hints as +/- 3 points, weak hints
as +/- 1 points, inconclusive as 0 points, and the
average is taken over all directed indicators.

(ii) Sdiff : The directed estimates ��C are transformed
into log odds ratios comparing the two probabilities
�π + ��C and �π , (i.e. log( �π+ ��C

1−(�π+ ��C)
/ �π
1−�π )) and the

average is taken over all directed indicators.
(iii) S|ẑ| : The average of |ẑ| over all indicators.
The first two approaches aim to investigate whether

the results in the intervention region (compared to the
control regions) go on average either in the desired or
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Fig. 7 Visualization of the estimated standardized prevalences in a line plot for the indicator “Formulary concordant diabetes medication’

Fig. 8 Visualization of the estimated trends per region in a forest plot for the indicator “Formulary concordant diabetes medication”
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Fig. 9 Visualization and tabulation of the key figures for the indicator “Formulary concordant diabetes medication”

Fig. 10 Visualization of the estimated standardized prevalences in a line plot for the indicator “GP-led geriatric assessment”
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Fig. 11 Visualization and tabulation of the key figures for the indicator “GP-led geriatric assessment”

in the opposite direction. The third approach looks only
at whether anything special has happened in the inter-
vention region, independent of whether it goes into the
desired or the opposite direction. The approaches can be
interpreted as a sequential procedure. The first approach
takes the relevance of the differences into account, and
requires a rather distinct effect for the single indicators.
If this way some evidence for an overall positive or neg-
ative effect can be generated, the investigation can be
stopped. However, if this way no effect is found, we may
still obtain some evidence from the second approach, if
there are many indicators with a (small) move into the
desired direction – or if the opposite scenario holds. If this
also fails, we can reach evidence in the third approach,
if there are distinct trend changes (compared to the con-
trol regions) in many indicators, possibly in opposite
directions. This could be interpreted in the way that the
intervention had an overall impact, but sometimes in the
desired and sometimes in the undesired direction.
In all three approaches it remains the question how to

add inference statements to the computed statistics in
a meaningful manner. Computing standard errors is not
straightforward, as this has to take into account poten-
tial correlations across different indicators. Such correla-
tions are not unlikely, as some indicators are conceptually
closely related. Moreover, it is unclear which value the
summary statistics should be compared to. For example, if
we consider a null hypothesis of the type “There is no dif-
ference between the intervention region and the control
regions for any indicator” (which can be operationalized

in different manners), the expectation of S needs not to be
zero. This follows from the fact that if the prevalence of an
indicator is close to 0 or 1 (which has to be expected for
a substantial number of indicators), it is not equally likely
to obtain a positive or a negative hint of the same degree
under such a null hypothesis. Sometimes, the require-
ments on relevance may even make it impossible to obtain
a hint in one direction.
We hence suggest an alternative approach to obtain

inferential statements. We can systematically exchange
the role of the intervention region with any of the con-
trol regions and compute the value of S for any of these
R scenarios. If we always observe a less extreme value
in these alternative scenarios, then we have some evi-
dence that the intervention region really plays a specific
role. Formally, this can be regarded as a permutation
test approach and a p-value can be computed by count-
ing how often the originally observed value exceeds or
falls below the values under the alternative scenarios. (In
the third approach, only exceeding values are of inter-
est.) However, based on R = 13 control regions, this
method leads to obtaining only a few different possible
p-values. In particular, even if the intervention region is
far away from all control regions, this does not imply
a small p-value. We hence suggest to base the p-value
on approximating the distribution of the 13 values under
the alternative scenarios by a normal distribution. Subse-
quently all observed values are presented in a simple plot
together with the approximating normal distribution, thus
allowing the reader to judge the basis and adequateness
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of such a p-value. Figure 12 illustrates this approach using
the first summary measure Shint as an example.
This approach can also be used to analyze different sub-

groups of indicators, e.g. the program specific indicators.
However, this rises additional multiplicity issues, which
have to be addressed.

Discussion
Sensitivity and subgroup analyses
The overall analytical strategy of a single indicator is
rather complex. Consequently, there may be concerns
about specific assumptions or decisions made in the anal-
ysis process that may have an undesirable impact on
the results. This motivates sensitivity analyses to inves-
tigate the stability of the results with respect to such
assumptions and decisions. We consider in the sequel
three different types of analyses that may be useful in this
context.

Technical sensitivity
This refers to assumptions and decisions made in the sta-
tistical modeling and computations. If such aspects are
varied, we expect to see a very small impact on the results.
Examples for technical sensitivity are

(i) Varying the size of the Monte Carlo samples
described in the Appendix.

(ii) Varying the number of knots for the splines used to
estimate the effect of age.

(iii) Consider practices instead of patients as clusters in
computing robust standard errors.

(iv) Using the on-top-trends ˆ̃
θr as input in the meta

analysis.
(v) Estimating θr by a meta regression within each

region. These estimates are consistent for the same
quantities, but less efficient, as variation due to an
overall trend is not modeled. On the other hand, this
approach allows a region specific error variance.

It would also be of interest to combine the different ana-
lytical steps described above into one model. In principle,
this can be accomplished by incorporating the structure
assumed for prt and for θr , respectively, into the logistic
model used to compute the standardized prevalences. In
other words, αRitt is replaced with a random effects model
for the trend. However, the parameters of such a model
would refer to probabilities on the logit scale, and not to
probabilities on a probability scale. Hence, they would be
conceptually different. Alternatively, a generalized linear
model with Bernoulli variance and identity link may be
used. This may, however, be problematic with respect to
modeling covariate effects correctly. In any case, it is not
completely straightforward to combine the different steps
in one model.

Conceptual sensitivity
This refers to approaches that use the available data in
a slightly different way. There is still the expectation to

Fig. 12 The values of the first summary measure for the intervention region and the 13 control regions and the approximating normal density curve
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get similar results, which may be even more adequate.
Examples for conceptual sensitivity analyses are:

(i) Restricting the analysis period to the first five years.
In case the effect of the intervention was saturated
after some time, this may result in more distinct
effects. Otherwise, we would just loose efficiency due
to a lower sample size.

(ii) Removing practices with prevalences already close to
the desired prevalence over the whole period.
Patients treated in these practices cannot improve
any further, and this may mask intervention effects.

(iii) Using the intervention region instead of the BW
sample for standardization. This may make the
intervention effect more visible, if the intervention is
best to a population close in composition to that of
the intervention region.

(iv) Restricting the control regions to those with a
regional physicians’ network. This comparison might
be more fair, but less efficient.

Subgroup analyses
Similar results in different subgroups of patients may
underline that the intervention is really effective for all
subjects. Differing results may inform us that the inter-
vention is particularly helpful in certain subgroups. How-
ever, additional multiplicity issues may arise. Candi-
date variables for subgroup analyses are the confounders
already available in all subjects, i.e. age, gender, comorbid-
ity and SES.

Identifying indicators with high likelihood for a specific
role of the intervention region
When considering so many indicators, it is desirable
to focus on the interpretation of those indicators with
the strongest positive or strongest negative intervention
effects, respectively. It is well known that just ordering
the effects by size is a poor approach [15], as this invites
over-interpretation of extreme results. In the last decades
there has been substantial progress in developing meth-
ods to identify signals of interest in amore reliablemanner
based on the fact that a large number of indicators allows
the estimation of the variation of the true effects. Conse-
quently, the posterior probability to be above the clinical
relevant threshold (cf. [16]) or characteristics of the pos-
terior distribution of the rank can be considered [17]
for each effect. However, the necessary computations are
complicated by the fact that the effect estimates are not
independent.

Assessing potential acceleration and deceleration
It is one of the overall questions of the project, whether the
effects of the interventions are long lasting. Some effects
may vanish over time or they may become more distinct

after some time. Investigating the stability of the trend
may give an idea about this.
A simple approach is to consider within the interven-

tion region estimates for the on-top-trend θ̃EKT in the first
half of the time period, for the on-top-trend θ̃LKT in the
second half of the time period, and for the difference
�KT = θ̃LKT − θ̃EKT as an expression of the accelera-
tion/deceleration. Estimates for these quantities can be
reported together with confidence intervals and p-values.
Estimates of these quantities can be easily obtained by

replacing in model (1) the linear trend in the intervention
region by a linear spline with a knot exactly at the mid-
dle of the observation period. This would again take into
account that there might also be a change in the overall
trend.
A verbal classification of the results is here more chal-

lenging, as there are a lot of possible patterns such as
vanishing, reversal, late start, acceleration or decelera-
tion. Furthermore, it is not straightforward to define rules
to distinguish these patterns, in particular if relevance
should also be taken into account.

Assessing inter-practice variation
Improving quality indicators at the population level is
the ultimate aim of any intervention of the type con-
sidered in this project. However, we can also investigate
other aspects that may inform us how the intervention
has (or has not) reached this aim. One of these aspects
is the inter-practice variation. A high inter-practice vari-
ation is often regarded as an indicator of poor quality, as
this may reflect a fundamental dissent among the health
care providers about the optimal management of patients
[18, 19]. Reducing inter-practice variation is hence also an
aim of an integrated care model. However, such a reduc-
tion does not automatically imply an improvement in
care; practices may also converge to a poor management
strategy.
In any case it is rather simple to analyse trends in inter-

practice variation with a similar analytic strategy. We just
have to replace the estimates p̂rt for the standardized
prevalences in each region and year by estimates of the
inter-practice variation. These can be easily obtained by
fitting a logistic regression model with the practice as ran-
dom intercept in each region and year with adjustment
for confounders at the individual level. Thus, differences
in the patient populations across practices are taken into
account. Furthermore, by comparison with the control
regions it can be taken into account that increasing or
decreasing inter-practice variation in a region may also
happen without an intervention.
Inter-practice variation can also occur with respect to

the trends in the intervention region. Some practices may
improve fast and some slow. This can be analysed with
models including random intercepts and random slopes
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for each practice fitted to the data from the intervention
region.

Incorporating differences at baseline
It is natural that the prevalence of an indicator moves up
and down within a region to some degree over time, either
due to random variation or to temporal changes in the
average patient management. Therefore, the intervention
region may by chance have a relatively high or a rather
low prevalence level at the baseline year t = 0. This may
lead to an increasing or decreasing trend over time, either
due to regression to the mean or due to specific mea-
sures taken in the region to address the issue reflected by
an indicator. In both cases a comparison with all control
regions can become unfair, and it is desirable to com-
pare the intervention region only to control regions with a
similar level at baseline.
In the model (1) the parameter βr reflects this baseline

level for region r. So a naive implementation of this idea
would be to restrict the comparison to control regions
with an estimated baseline level β̂r similar to β̂KT . This
requires, however, defining some threshold distinguishing
similar from not similar. This can be avoided by assuming
a joint normal distribution for (βr , θr)r=0,...,R and to use
this to predict θr based on βr . Then μC can be replaced
by the predicted trend for a control region with a baseline
value identical to that of the intervention region.

Using automatically generated indicators
One limitation of the project is the restriction to a prese-
lected albeit large set of quality indicators. These indica-
tors may not cover all aspects of the health care system
and hence there is a risk to overlook important trends.
On the other hand, the claims data includes informa-
tion on diagnoses, prescriptions, and medical procedures.
They are based on well-established coding systems such
as ICD, ATC, OPS, or EBM [20–23]. Hence we can also
define indicators by defining events according to mak-
ing a certain diagnosis, to prescribing a specific drug,
or to receiving a certain medical procedure. Moreover,
the hierarchical structure of the coding systems allows
us to define meaningful groups of diagnoses, drugs or
procedures, e.g. drugs with the same therapeutic inten-
tion. Hence thousands of events of interest can be defined
for which time trends can indicate a change in patient
management. However, the crucial point is to define the
populations of interest. Just taking the whole population
is possible and valid, but this may imply a lack of power in
detecting trends. In principle, it is possible to also define
risk populations in an automatic manner. For example, for
a certain drug or drug group, we can identify all diagnoses
that typically appear close to the prescriptions, and can
define the population at risk as those suffering from such
a diagnosis. Such an approach would be similar to exist-

ing data mining techniques in pharmaco-epidemiological
data bases covering spontaneous reports of adverse events
[24, 25].

Code development
The analysis to be performed for a single indicator is
rather complex. It involves the application of several sta-
tistical procedures in a sequential manner using the out-
put of one method as input for the next method. The
simultaneous application on 106 indicators (and the use
of resampling procedures) makes it impossible to check
the validity of each application by inspecting outputs and
log files. Consequently, it was essential to develop code
that was both robust and valid. The approach was hence
split further into very small steps reflecting the application
of single statistical procedures or certain data manage-
ment actions. Each step was tested using input for which
the desired output could be determined by independent
means. A collection of such tests could be executed and
compared to previous outputs in an automatic manner,
allowing us to test the whole code after each development
cycle.
The overall code could not be tested this way, as the

desired output could not be determined by independent
means. We hence generated data sets according to our
overall model and tested the consistency of the resulting
estimates by applying these to very large datasets. Further-
more, we explored the validity of the inference by checking
the coverage of confidence intervals in simulation studies.

Reporting
The application on 106 indicators (including descriptive
tables to report basic properties of the data) and the sys-
tematic conduct of sensitivity analyses resulted in a huge
amount of information. We hence generated a series of
automated reports addressing different levels of interest.
A first report (with nearly 10,000 pages) presented sev-
eral items for each indicator. First, a summary of the
results from the main analysis and all sensitivity analyses.
Second, the complete results including some descriptive
tables of the raw prevalences and the distribution of the
covariates (stratified by region, year and both). Further
reports focused on the acceleration or deceleration of
trends, the analysis of the overall evidence, or provided
an overview of all indicator specific results using tables
and graphs presenting the numbers generated in a man-
ner facilitating comparisons of interest. All these reports
are available for the public (on request) at https://www.
pmvforschungsgruppe.de/projekte/integral.html.

Conclusions
The methodological approach developed in this project
addresses general challenges in the evaluation of inte-
grated care models such as accountable care organiza-

https://www.pmvforschungsgruppe.de/projekte/integral.html
https://www.pmvforschungsgruppe.de/projekte/integral.html
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tions. This latter model for delivery and payment of
health care has attracted much attention in the US [26]
but also in Europe [27]. Recommendations for the eval-
uation of accountable care organizations were already
developed some years ago [28, 29]. Since randomiza-
tion is rarely feasible when introducing accountable care
organizations, comparing patient groups exposed and
unexposed to the new model in an observational pre-
post design with adjustment for potential confounders
can be regarded as providing the best available evidence
[26]. This approach can be also called a difference-in-
difference approach [30, 31]. The methodology developed
for this project can also be seen as a difference-in-
difference approach with adjustment for potential con-
founders. However, we consider the specific situation of
evaluating one region-specific accountable care organi-
zation. This specific situation made it necessary to take
into account that regional time trends can happen by
chance. A comparison with several control regions lack-
ing such an organization made is possible to tackle this
challenge.
At first sight, the idea to compare prevalence time

trends in an intervention region with corresponding
trends in control regions sounds like a rather standard epi-
demiological analysis. However, implementation of this
idea was rather complex, when taking into account the
need for adjustment and the need to assess a specific role
of the intervention region. We believe that the approach
presented here can handle the major statistical challenges:
population differences (also over time) are addressed by
standardization; we offer transparency with respect to
the derivation of the key figures; global time trends and
structural changes do not invalidate the analyses; the
regional variation in time trends is taken into account in
the final judgement of the intervention effect. The latter
three points are hopefully well illustrated by our exam-
ples. And it is worth mentioning that we could indeed
observe a regional variation in time trends for themajority
of indicators.
The simultaneous application on over one hundred indi-

cators added further complexity, both computationally
and conceptually. Overall, the project demanded substan-
tial intellectual as well as organizational efforts to ensure
adequateness, validity and transparency – as described in
this paper – just to prepare the first main publication. Fun-
ders and scientists may tend to prioritize projects that can
address the question of interest within a fully established
methodological framework and an existing computational
environment, such that results and publications can be
generated with limited efforts. However, certain questions
of high relevance such as the one addressed in this project
require more efforts, and we should continue to plan
and execute projects with an advanced methodological
complexity.

Appendix: Monte Carlo approximation of the
standard errors of the standardized prevalences
To obtain the standard errors of p̂rt , we make use of the
fact that we can express p̂rt as

p̂rt = 1
|SBWt |

∑
i∈SBWt
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ignoring in the notation that βl may depend on r and t and
zil may depend on t. Consequently, we have
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where Cl,l′ denotes the covariance between β̂l and β̂l′ , and
we can obtain an estimate for Var(p̂rt) by plugging in the
estimated covariances.
The full enumeration of all pairs of subjects is, how-

ever, cumbersome, so we make use of a Monte-Carlo-
approximation, based on expressing the variance of p̂rt
as

1
|SBWt |
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⎝ 1
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∑
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allowing us to replace the two averages by averages based
on subsamples. So we draw a subsample S1 of size n1 of
SBWt and approximate the first average by

1
|SBWt |

∑
i
vi ≈ 1

n1

∑
i∈S1
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and a subsample S2 of size n2 of order pairs of SBWt , and
approximate the second average by

1(|SBWt | − 1
) |SBWt |

∑
i,i′

cii′ ≈ 1
n2

∑
(i1,i2)∈S2

ci1i2 .

We choose n1 = min(n, 10000) and n2 =
min([ n/2]− , 20000), with n = |SBWt |.
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